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Forecasting the occurrence of ozone episode days can be regarded as an imbalanced dataset
classification problem. Since the standard artificial neural network (ANN) methods cannot
make accurate predictions of such a problem, two cost-sensitive ANN methods, cost-
penalty and moving threshold, were used in this study. The models classify each day as
episode or non-episode according to the standard of daily maximum 8 h O3 concentration.
The ozone measurements from six monitoring stations in Taiwan were used for model
training and performance evaluation. Two different input datasets, regional and single-site,
were generated from raw air quality and meteorological observations. According to the
numerical experiments, the predictions based on the regional dataset are much better than
those obtained from the single-site dataset. Two cost-sensitive ANN methods were
evaluated by receiver operating characteristic (ROC) curves. It was found that the results
obtained by the two approaches are similar. If the misclassification costs are known, the
cost-sensitive method can minimise the total costs. If the misclassification costs are
unknown, the cost-sensitive ANN can obtain a better forecast than the standard ANN
method when an appropriate cost ratio is used. For clean areas where episode days are very
rare, the forecasts are poor for all methods.
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1. Introduction

Ground-level ozone is a secondary air pollutant formed by the
photochemical reactions in the atmosphere from its precur-
sors, the oxides of nitrogen and volatile organic compounds
(Seinfeld and Pandis, 1998). It has caused intensive concern
because of its adverse effects on human health and vegeta-
tion. A wide variety of operational warning systems have been
developed to forecast the next day's O3 levels (Schlink et al.,
2003). On days of expected high O3, health warnings and calls
for community action can be issued.

Many methods exist for forecasting ground-level ozone
concentrations (USEPA, 2003). These methods can be classified
in two broad categories: statistical and deterministic. The
deterministic approaches usually employ a three-dimensional
chemical transportmodel to carry out numerical computations
(H. Chiang).

er B.V. All rights reserved
to obtain the concentration distributions of ozone and other
photochemical air pollutants. These methods can generate
three-dimensional concentration distributions and find the
cause–effect relationships between ozone concentration and
emission of precursors. They are, however, difficult to develop
and operate. In addition, the required emission and meteor-
ological data are difficult to determine accurately in real time.
On the other hand, statisticalmodels directly use air quality and
meteorological observations to develop empirical relationships
between ozone concentration and other environmental para-
meters. These approaches are simple to develop and have been
widely used in short-term forecasting of air quality (Zannetti,
1990).

Statistical methods that have been proposed for ozone
forecasting include linearmultiple regression, nonlinear regres-
sion, classification and regression tree (CART), and ANN. There
.
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is growing interest in using ANNs for air quality forecasts
because they are able to simulate strongly nonlinear behaviours
and to learn complex and even a priori unknown relationships
directly from the training data. The development and applica-
tion of ANN models for air quality forecasting has made
considerable progress in recent years (Gardner and Dorling,
1999; Kolehmainen et al., 2001; Kukkonen et al., 2003; Niska
et al., 2004; Wang and Lu, 2006). Some weaknesses still exist,
however, when ANN models are applied to air quality forecast.
We will focus on two issues in this paper.

The first issue concerns the input variables. The ANN
ozone forecast models could be classified as single-site and
regional models (Gardner and Dorling, 2000; Thompson et al.,
2001). Single-site models use the data collected from one site
to carry out the forecast, while regional models use the data
collected from multiple sites to represent the regional condi-
tions. Most ANNmodels developed in previous studies are the
single-site model. The formation of ozone in the troposphere
is, however, a complex process involving regional transport of
ozone and its precursors. Therefore it is reasonable to
anticipate that regional models would be superior to single-
site models. We will compare the results obtained by these
two different approaches and evaluate their performance.

The second issue concerns the training method of ANN
models. Many researchers have reported that ANN models can
make reasonable predictions when they are used to predict the
daily maximum 1 h and/or 8 h concentrations. As a matter of
fact, the predictions in the middle range of concentration are
fairly good in general.ManyANNmodels, however, over-predict
low values and under-predict high values; see, for example,
Comrie (1997) and Niska and colleagues (2004). Generally
speaking, the performance of most ANN models in a high
ozoneepisode is rather poor. This bias is causedbynon-uniform
distribution of training data (Chen, 2006). Like that of other
standard statistical models, the ANN model's performance
depends largely on the quality of training data. When the data
are not homogeneous, results can be biased toward the most
commonly sampled regime. From modelling daily maximum
ozone concentrations, we have a large amount of data for low
and middle concentration events and limited data for high
concentration events. ANNs and other machine learning
techniques trained to model these problems will be biased
towards high frequency values, that is, the middle range. To
avoid this bias, a new training algorithm should be considered.

In previous studies, most ANNmodels were used to predict
the absolute value of the ozone concentration. We will focus,
however, on predicting the occurrence of the episode day. The
aim of this study is to develop a model that can classify each
day as episode or non-episode. This is the so-called two-class
classification problem in the field of machine learning. There
are many classifiers that can be used for such problems, such
as decision trees, support machine vectors (SVM), and ANN.
Unfortunately, when these methods are applied to ozone
episode forecasts, they face a so-called imbalance data set
classification problem. This problem occurs when the training
data for one class greatly outnumber those of the other class.
With highly imbalanced data it is difficult to detect the rare
but important event since standard classifiers tend to be
overwhelmed by the large classes and ignore the small ones.
The results are heavily biased toward the majority class. In
most parts of the world, the ratios of the ozone episode days
are relatively low, typically less than 20%; in some clean
regions the ratio may be lower than 1%. Thus, the forecasting
of ozone episode days is a highly imbalanced data classifica-
tion problem. Some researchers in the field of air quality have
tried to find a solution. For example, Lu and Wang (2008) used
an SVM approach to predict the occurrence of ozone episode
days.

A number of solutions to the class imbalance problem have
been proposed. These solutions include many different forms
of resampling techniques, adjusting the costs of misclassifica-
tion, adjusting the decision threshold, and recognition-based
learning (Chawla et al., 2004).

The most direct method for dealing with the highly im-
balanced classification problem is to use cost-sensitive learn-
ing (McCarthy et al., 2005). A cost-sensitive learner can accept
cost information from a user and assign different costs to
different types of misclassification errors. Maloof (2003) has
argued that learning from imbalanced data sets and learning
whenmisclassification costs are unequal and unknown can be
handled in a similar manner. Zhou and Liu (2006) also suggest
that cost-sensitive learning is a good answer to the two-class
imbalance problem. Thismotivates us to investigate the use of
cost-sensitive ANN for the forecasting of ozone episode days.

The aim of this study is to compare the performance of
different cost-sensitive ANN algorithms when they are applied
to ozone episode forecasts. We will focus on how to forecast
correctly the occurrence of episodes rather than predict the
absolute concentration level. Ozone observations from six air
quality stations in Taiwanwith diverse distribution features are
employed as test cases fromwhich to draw general conclusions
and guidelines on the use of cost-sensitive techniques for air
quality forecasts.
2. Methods

2.1. ANN architecture

Current researches indicate that ozone can affect human
health over long periods of time, not just during a few 1 h peak
events. A new standard based on daily maximum 8 h ozone
concentration was promulgated in the USA. Therefore, the
forecastingmodels will classify each day as an episode or non-
episode according to the standard of the daily maximum 8 h
ozone concentration. If the daily maximum 8 h O3 concentra-
tion at a specific day and site exceeds 80 ppb, this site will be
regarded as an ozone episode day on that day; otherwise, it is
not an episode day.

As shown in Fig. 1, the ANN architecture used in this study
is a fully-connected, feed forward, back-propagation, multiple
layer perceptron (MLP). This is a three-layer network; the input
and the hidden layer contain multiple units and the output
layer only has a single unit. The relationship between the
inputs xi, i=1,2,…,n1, and the output variable y̑ is given by
(Chaloulakou et al., 2003)
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m = 1

w 2ð Þ
im f1

Xn1

i = 1

w 1ð Þ
imxi + b 1ð Þ

m

 !" #
+ b 2ð Þ

 !
ð1Þ



Fig. 1 –The architecture of a multilayer neural network.
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where f1, f2 are the activation transfer functions for the hidden
and output layers, respectively,wim

(1) represent the weights from
ith input node tomth hiddennode,wim

(2) denote theweights from
themth hidden node to the output node, bm(1) and b(2) denote the
biases of themth hidden node and the output node, and n1 and
n2 denote the number of the input and hidden nodes,
respectively. The transfer function used for both the hidden
and output layers (f1 and f2) is the log-sigmoid function; its
output is bounded between zero and one. The target of training
data is y=1 if the sample is a positive label and y=0 otherwise.
The example is classified as positive if y̑ N0.5 for standard ANN.

The ANN was trained (iterative adjustment of weights and
biases) by the minimising of an error function to determine
the parameters and learn relationships from the presented
data. The error function is a measure of discrepancy between
the observed and predicted values. Two well-known error
functions are OLS (ordinary least square) and LAD (least
absolute deviations). For OLS, the error is:

Q b
P

� �
=
Xn
i = 1

yi �ŷi b
P

� �� �2

ð2Þ

while for LAD, the equation becomes:

Q b
P

� �
=
Xn
i = 1

jyi �ŷi b
P

� �j ð3Þ

where yi are observed values, ŷi are predicted values, β are the
unknown parameters, and n is the size of training data.

The choice between different error functions depends on
statistical considerations such as the distribution of the target
variable as well as the real situation. The standard ANN uses
the OLS error function. For cost-sensitive cases, a modified
error function will be used which will be discussed later.

The ANN was trained by the traingdx algorithm of the
MATLAB software (Demuth and Beale, 2004). This algorithm
uses variable learning rates and, although usually slower than
the othermethods, it can providemore consistent results when
early stopping is used. The available data were randomly
divided into three subsets: training data, validation data and
forecast data. The training data were about half the size of the
dataset considered; the remaining datawereused for validation
and evaluation. The MLP models were then trained to display
the relationship between the predictors and daily maximum
ozone concentrations using training data. A validation data set
checked the performance of the MLP network to determine the
epoch at which training should be stopped to avoid over-
training. A forecast dataset was used for performance evalua-
tion. Typically, the global minimum is not reached and a good
local minimum is treated as an acceptable solution.We trained
MLP models 20 times in order to reduce the likelihood of local
minima causing problems.

2.2. Cost-sensitive learning

Learners can implement cost-sensitive learning in a variety of
ways. One common method is adjusting the costs of the various
classes so as to counter the class imbalance. This can be done by
increasing thepenalty associatedwithmisclassifying thepositive
class relative to the negative class. We refer to this approach as
the penalty method later in this paper. The effect of assigning
penalties is equivalent to changing the relative data distribution
in the two classes, or, in other words, to re-balancing the data.



Fig. 2 –The locations of air quality monitoring stations (red
squares represent the stations selected for model evaluation
and the other air quality monitoring stations are denoted by
green circles).
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This method is similar to the standard ANN method except the
error function is modified as:

Q b
P

� �
=
Xn
i = 1

c yi �ŷi b
P

� �� �2

ð4Þ

where c is themisclassification cost. For convenience, the costs
associated with false-negative and false-positive errors were
assigned to λ and unity, respectively. If the misclassification
costs are known, λ can be determined and Eq. (4) can train the
ANN model by minimising the total costs. If the misclassifica-
tion costs are unknown, λ is not related to misclassification
costs. It can be considered as a parameter used to counter the
class imbalance. It will be referred to later as the cost ratio.

Another popular approach to solving these problems is to
bias the classifier so that it pays more attention to the positive
instances. For a two-class learning problem, the input pattern is
normally assigned to a positive class if ŷ≥τ and to the negative
class if ŷ≥τwhere ŷ is the predicted value and τ is a threshold. If
the misclassification costs are equal, τ=0.5. For the threshold
moving algorithm, the threshold will be changed by misclassi-
fication cost. According to Dorling and colleagues (2003), the use
of unequal misclassification costs corresponds to a threshold
given by:

s = Cfp= Cfn + Cfp
� � ð5Þ

where Cfn and Cfp are the costs associated with false-negative
and false-positive errors, respectively. Since λ=Cfn/Cfp, we can
show that τ=1/(1+λ).

2.3. Experimental data

The original air quality data used in this study were obtained
from EPA, Taiwan (2007). The data consist of hourly average
concentrations of ozone and other relevant pollutants collected
from 72 monitoring stations in Taiwan from 2000 to 2003. The
meteorological data were taken from surface observations
collected by the Central Weather Bureau (CWB, 2007). The CWB
meteorologicaldataused forozone forecastsare listed inTable1.
In addition to these observations, another important parameter
is solar radiation. An empirical formula suggestedbyKasten and
Czeplak (1980) was used to determine the solar radiation, R. It is

R = R0 1� 0:75C3:4� � ð6Þ

where C is the fractional cloud cover and R0 is the clear sky
insolation which is calculated as

R0 = 990 sin/ð Þ � 30 ð7Þ

where ϕ is the solar elevation angle.
Table 1 – Input meteorological parameters

Ave. of surface wind speed from 08:00 to 16:00 LST
Ave. of u-components from 08:00 to 16:00 LST
Ave. of v-components from 08:00 to 16:00 LST
Max. hourly surface temperatures
Max. surface temperature–Min. surface temperature
Ave. of surface relative humidity from 08:00 to 16:00 LST
Ave. of cloudiness at 11:00 and 14:00 LST
Solar angle at 12:00 LST
The air quality and meteorological variables are calculated
on a daily basis. If more than 6 h of data aremissing on one day
for any weather variable or for ozone, then the entire day is
regarded as missing data. After daily variables were computed,
the data quality was examined and the stations with too many
missing data were omitted from the analysis. Data from 62 air
quality monitoring stations and seventeen surface meteorolo-
gical stations were kept and used later. At this stage, a fairly
small fraction (ranging from 5% to 10%) of missing data was
found. The missing values were imputed with the algorithm
developed by Schneider (2001). Data imputation allows a
consistent and fair model comparison exercise.

Only six air quality stations were selected for prediction and
model evaluation. Two stations were selected for three metro-
politan areas in Taiwan: one in the coastal area, the other at an
inland downwind site. These monitoring stations, shown in
Fig. 2, represent different class distributions. The statistics of
dailymaximum8hconcentrations for these stations are given in
Table 2. The data are listed according to class imbalance (the
most imbalanceddata sets are listed first). Among these stations,



Table 3 – Contingency table for a two-category forecast

Forecast

b80 ppb ≧80 ppb

observed b80 ppb TN FP
observed ≧80 ppb FN TP

Table 2 – The locations and statistics of daily maximum
8 h O3 concentration at selected monitoring stations

Station Longitude Latitude Averaged
8 h O3

conc.

S.D.
of 8 h
O3.

conc.

Episodes
ratio

(degree) (degree) (ppb) (ppb) (%)

TamSui 121.43 25.17 42.0 14.3 1.3
SaLu 120.55 24.23 39.6 17.1 2.8
HsinTien 121.53 24.98 43.2 19.0 4.9
NanTou 120.68 23.90 52.4 21.5 10.2
MeiLong 120.53 22.89 58.2 20.8 15.3
ChouYing 120.29 22.68 56.8 25.3 18.8
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the TamSui and SaLu stations are located on the upwind side of
major emissionsmost of the time. The ratios of episode days for
these two stations are quite low (less than 3%). HsinTien is a
densely populated suburb located on the downwind side of
Taipei metropolitan area. The ozone concentrations at HsinTien
are influenced by regional contributions as well as local
emissions. The concentrations of primary pollutants are fairly
high in this station, but the frequency of episode days is low
(~5%). This is probably because of the effect of ozone titration.
NanTou is locatedon thedownwindsideofTaiChung, the largest
city in central Taiwan. The high ozone events occurring at
NanTou may be caused by the pollutants transported from
TaiChung and other cities. MeiLong is a small town located in a
valley in southern Taiwan. Ozone episodes occur under specific
winddirection that can transport pollutants fromnearby sources
to this location. ChouYing is located in the centre of Kaohsiung, a
major industrial city in Taiwan. It represents a heavily polluted
area; the ratioofozoneepisodedays isabout19%.Manypollutant
transport pathswill cross this site; hence, the ozone episodes are
influenced by regional as well as local conditions.

To account for the persistency of ozone pollution, the daily
maximum8h ozone concentrations of the previous three days
were used for input variables. The forecasts were, however,
carried out by use of the meteorological data on the same day.
This is based on the assumption that we can carry out a
‘perfect’weather forecast. This is the general approach used in
the developing stage of a ‘perfect prog model’ (Wilks, 1995).

It is well-known that different scales of a meteorological
system can affect the ground-level ozone concentrations; hence,
large-scale meteorological patterns as well as local observations
should be considered in the development of an ANN model. To
determine large-scale meteorological patterns, the observations
from all CWB stations were used. Since the amount of data from
all stationswas too large, the principal component analysis (PCA)
technique was used to reduce and orthogonalise the original
input data (Wilks, 1995). These treated variables were then used
as new input vectors in the ANN model. The size of the input
vectors was reduced by retention of only those components that
contributed more than a specified fraction (depending on the
variables) of the total variation in the data set.

The methods for the preparation of input data are
shown in Fig. 1, which includes:

(1) The previous three days' daily maximum 8 h ozone
concentrations from all EPA stations, processed by the
PCA technique before input to ANN models.
(2) The wind velocity components (u, v) from all CWB
stations, processed by the PCA technique before input to
ANN models.

(3) The temperature from all CWB stations, processed by
the PCA technique before input to ANN models.

(4) The local meteorological variables, i.e. u, v, temperature,
cloudiness, and solar radiations from the nearest CWB
station.

(5) The previous day's ozone and NO2 concentration from
the nearest EPA station.

The regional dataset includes all items mentioned above,
but the single-site dataset contains only items 4 and 5.

2.4. Performance evaluation

The performance of the ozone forecast is evaluated by a
confusion matrix as illustrated in Table 3. The columns are the
forecast class and the rowsare the observedclass. In thismatrix,
TN is the number of non-episode days correctly classified, FP is
thenumberofnon-episodedays incorrectly classifiedasepisode
days (false alarm), FN is the number of episode days incorrectly
classified as non-episode days, and TP is the number of the
episode days correctly classified. A perfect forecast programme
would have values in cells ‘TN’ and ‘TP’ only. In the real world,
imperfect forecasts result in values in cells ‘FP’ and ‘FN’.

Based on the confusion matrix, several measures can be
computed, including probability of detection (POD), false alarm
rate (FAR), false-positive rate (FPR)andaccuracy. PODrepresents
the fraction of correctly forecast ozone episode days, ranging
between [0, 1] with a best value of 1. POD is calculated as:

POD= TP= FN+ TPð Þ ð8Þ
FAR is the fraction of false alarms over total forecast

positive events, ranging between [0, 1] with a best value of 0.
FAR is computed as:

FAR = FP= FP + TPð Þ ð9Þ

FPR ranges between [0, 1] with a best value of 0, which is
computed as:

FPR = FP= TN + FPð Þ ð10Þ
The accuracy, ranged between [0, 1], is defined as:

Accuracy = TP + TNð Þ= TP + FP + TN + FNð Þ ð11Þ

In order to maintain public confidence in the ozone action
advisories, it is desirable that the POD should be reasonably
high. At the same time, the FAR and the FPR should be
reasonably low. For a highly imbalanced classification pro-
blem, accuracy may not a good indicator since the accuracy is
generally as high as TN is large.



Table 4 – The statistics of the forecast using local data and
standard ANN method

Station Observed
episodes

Predicted
episodes

No.
correctly
predicted
(POD)

No. of
false

alarms
(FAR)

Accuracy

TamSui 7 0 0 (0.000) 0 (0.000) 0.985
SaLu 14 0 0 (0.000) 0 (0.000) 0.969
HsinTien 21 0 0 (0.000) 0 (0.000) 0.954
NanTou 48 22 12 (0.250) 10 (0.455) 0.899
MeiLong 71 35 25 (0.352) 10 (0.286) 0.877
ChouYing 82 44 28 (0.341) 16 (0.364) 0.846
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When the operating conditions (misclassification costs and
class distribution) are unknown, classifier evaluation requires
a method of visualising classifier performance across the full
range of possible operating conditions. The receiver operating
characteristic (ROC) curve is an ideal graphicalmethod to fulfill
this requirement. The horizontal axis of an ROC curve is FPR
and the vertical axis is POD. By varying the misclassification
cost or threshold parameter, it is possible to draw the ROC
curve. Some researchers argue that ROC curves are good
indicators of the classifier's performance; for example, Dorling
and colleagues (2003) suggested that the area under the ROC
curve gives the effectiveness of the classifier. They stated that
if nothing is known about the optimal cost ratio, the closer the
area tounity the better the classifier.Many researchers suggest
that themore the ROCapproaches the (0,1) point, the better the
classifierwill discriminate under various operating conditions.
3. Results and discussion

3.1. Numerical experiments

Two ANN algorithms (cost-penalty and moving threshold
methods) and two input datasets (single-site data and
regional data) were considered; hence, four runs were
carried out for each site. Thirty-six cost ratios were con-
sidered for each run. They can be represented by λ=100.1 k,
k=−10, −9,…,15. The method will be referred to as the stan-
dard method when λ=1.

3.2. Statistics of the forecast from using standard ANN
methods

The statistics of the forecast from using the standard ANN
method and single-site input data are summarised in Table 4.
Table 5 – The statistics of the forecast using regional data and s

Station Observed episodes Predicted episodes No. corre

TamSui 7 0
SaLu 14 0
HsinTien 21 1
NanTou 48 24
MeiLong 71 40
ChouYing 82 55
Wewill examine the results of the TamSui station first. There
are 455 days of data included in the forecast dataset and the
Tamsui station has seven episode days; unfortunately, none
is correctly predicted. These episodes are extremely rare
events representing approximately the upper 1.5% of the O3

distribution. Such extremely rare events are difficult to
predict. On the other hand, no alarm was given, so FAR
equals zero. The accuracy is very high (0.985), but, as
mentioned before, accuracy is not a suitable index for the
performance evaluation since it is high when the number of
episode days is small. As for the other stations, the results for
SaLu and HsinTien are also poor. None of the ozone episode
days is correctly predicted. The predictions of NanTou,
MeiLong, and ChouYing are somewhat better. Unfortunately,
none of the stations can correctly forecast more than 50% of
exceedances. Considering the difficulty of forecasts that are
at the extreme high end of the O3 distribution, a POD above
50% and a FAR below 50% are regarded as good outcomes.
Although this is a very loose standard, none of the stations
performed well in this capacity.

Table 5 is similar to Table 4 except that the regional input
data were used instead of single-site input. Whenwe compare
these two tables, we find that significant improvement can be
obtained if ANN models use a regional dataset. The POD
values are increased and the FAR values are decreased when
compared with Table 4. The improvements in ChouYing are
especially remarkable. The prediction based on regional
dataset is 16% higher in POD (correctly detects thirteen more
ozone episode days) and 11% lower in FAR (two fewer false
alarm days) than standard ANN models that use a single-site
dataset. Similar improvement also occurs in NanTou. This is
entirely reasonable since photochemical air pollution is a
regional problem. The ozone precursors can transport several
hours before the maximum ozone concentration is reached.
Unfortunately, the improvement in MeiLong is not so sig-
nificant. The POD increased by 4.2%, but the FAR also
increased by 1.4%. This may because MeiLong is located in a
valley (see Fig. 2). The effect of large-scale meteorological
conditions and ozone distributionsmay not be so important in
this station. According to the results of these two tables, it is
concluded that regional input data can improve the perfor-
mance of ANN in general.

It is worth mentioning that the numbers of the predicted
episodes aremuch smaller than those of observed episodes if
standard ANN is used. This is caused by the bias of
imbalanced dataset classification. Standard ANN methods
have a tendency to treat a minority as noise and therefore
disregard it.
tandard ANN method

ctly predicted (POD) No. of false alarms (FAR) Accuracy

0 (0.000) 0 (0.000) 0.985
0 (0.000) 0 (0.000) 0.969
1 (0.048) 0 (0.000) 0.956

15 (0.313) 9 (0.375) 0.908
28 (0.394) 12 (0.300) 0.879
41 (0.500) 14 (0.255) 0.879
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3.3. Comparison of different cost-sensitive methods

Fig. 3 shows the POD v. FAR curves obtained by cost-penalty
and moving threshold methods. The regional dataset was
used by both methods in order to obtain better results. Each
point in this figure corresponds to a different setting of the
cost ratio or threshold parameter. The points marked with
blue circles represent the results obtained by the cost-penalty
Fig. 3 –Comparison of POD v. FAR curves obtained by cost-pena
5: moving threshold method).
method, while those marked with red squares are computed
by themoving thresholdmethod. This figure shows the trade-
off between POD and FAR since FARwill be increased as POD is
increased. Interestingly, the results obtained by the two ANN
methods have the same trend and are very close. If, say, we set
up some criteria for acceptable model performance, POD
should be above 50% and FAR should below 50%; there are
some points in NanTou, ChouYing and MeiLong stations that
lty and moving threshold methods (o: cost-penalty method,
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meet these criteria. In general, these acceptable points occur
while the cost ratios range from one to five. For cleaner
stations (TamSui, HsinTien, SaLu) the PODwill be greater than
50% only when FAR is greater than 50%. This indicates that if
the events are rare, the forecasts of cost-sensitive ANNmodels
are rather poor. We should just wait for the event to occur
Fig. 4 –Comparison of ROC curves obtained by cost-penalty andm
threshold method).
unless we can tolerate the inconveniences caused by numer-
ous false alarms.

Fig. 4 is the computed ROC points obtained by cost-penalty
and moving threshold methods. Although there are some
fluctuations, the two curves are very close for every station.
This suggests that the cost-penalty has the same effect as
oving thresholdmethods (o: cost-penaltymethod,5: moving
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moving the decision threshold. The experiment carried out by
Maloof (2003) obtained a similar result.

3.4. Effects of different input data on the forecast

Fig. 5 is the POD v. FAR curves obtained by cost-penalty ANN
method using different datasets. The red squares are
obtained by the regional dataset, while the blue circles
represent the results computed by the single-site dataset.
Fig. 5 –Comparison of POD v. FAR curves obtained by cost-penal
5: regional data).
One approach dominates another if it has a higher POD and a
lower FAR. According to this rule, the forecasting using
regional data is better than that using single-site data. The
evidence is very obvious in NanTou and ChouYing. Probably,
the ratios of episode days are higher in these two stations;
therefore, they have enough episodes that can be used to
train the ANN models. The relationship between environ-
mental conditions and ozone concentration can be well
established in these two sites. On the other hand, since
ty method using different input datasets (o: single-site data,
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MeiLong is located in a valley, the influences of large-scale
meteorological conditions are not so significant. Thus, the
POD v. FAR curves obtained from different input datasets are
closed in MeiLong.

Fig. 6 shows the ROC curves obtained by the cost-penalty
ANN method using different input datasets. Since the ROC
curves obtained by using regional data are close to (0,1), this
Fig. 6 –Comparison of ROC curves obtained by cost-penalty metho
data).
again demonstrates the superior results of regional input
data.

3.5. Optimal cost ratio

The cost ratio (λ) is the most important parameter for cost-
sensitivity methods. Now, we will discuss how to determine
d using different input datasets (o: single-site data,5: regional



Table 6 – The statistics of the forecast using regional data
and cost-penalty ANN

Station λ Observed
episodes

Predicted
episodes

No.
correctly
predicted
(POD)

No. of
false

alarms
(FAR)

TamSui 12.59 7 11 2 (0.286) 9 (0.818)
SaLu 3.98 14 14 4 (0.286) 10 (0.714)
HsinTien 3.16 21 23 9 (0.429) 14 (0.609)
NanTou 2.00 48 45 27 (0.563) 18 (0.400)
MeiLong 2.00 71 67 40 (0.563) 27 (0.403)
ChouYing 1.59 82 79 52 (0.634) 27 (0.342)

Fig. 7 –Total misclassification costs for different cost ratios.
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the optimal cost ratio. Two different situations will be
considered. First, when misclassification costs are known or
can be assumed the best metric to evaluate overall classifier
performance is total cost. The formula for total cost is shown
below (McCarthy et al., 2005):

TotalCost = FN� CFNð Þ + FP� CFPð Þ ð12Þ

where CFN and CFP are the misclassification cost associated
with false-negative and false-positive error, respectively.
From Eq. (12), the total misclassification costs for six stations
at various cost ratios are shown in Fig. 7. The three curves
shown in each plot represent the total misclassification costs
at n=1, 2, and 4, where n=CFN/CFP. Please note that n and λ
are different. The cost ratio λ is only a parameter for cost-
sensitive ANNmodels, and n is the ‘real’misclassification cost
ratio. Setting different values of the cost ratio (λ) would
produce significant differences of the total misclassification
cost among the different misclassification cost ratio (n). The
results show that the total misclassification costs would be
close to the same value when the cost ratio is large. Just as we
expected, the minimum costs occur when cost ratio equals n.
This indicates that the cost-sensitive ANN method using n as
the cost ratio can achieve the lowest misclassification cost.

It is encouraging that we can use cost-sensitive ANN
models to minimise the total misclassification cost. Although
this is straightforward mathematically, it is difficult to
determine the misclassification costs in real air quality
management systems. The costs must be formulated in
financial terms; it is not always possible to derive the true
misclassification costs. In addition, different end-users are
likely to have different, possibly contradictory, views on the
correct set of misclassification costs (Dorling et al., 2003).

Now, we will discuss how to determine an appropriate λ
value when themisclassification costs are unknown. The POD
vs. FAR curves reveal the inherent trade-off between perfor-
mance in the positive and negative examples. We could
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choose a point on these curves and make whatever trade-off
we thought appropriate. For example, an air quality manager
can use the curves to choose the λ value so that POD will be
greater than 0.5 and FAR will less than 0.5. Here, we will
propose another ad hocmethod to determine the λ values that
suits the general interest. As we have noted in Tables 4 and 5,
the number of predicted episodes is too small when compared
with the number of observed episodes. We may select a λ so
that these two numbers become closer. According to this
principle, suitable λ were selected for each station. These
values were used to carry out the forecast by the cost-penalty
ANN method, and the results are shown in Table 6. When
compared with Table 5, the number of predicted episode days,
as well as the number of correctly predicted episodes, was
increased. This is a noteworthy improvement. The price we
have to pay for this progress, however, is a slight increase of
the false alarm rate. Nevertheless, it is interesting that the
POD values in most stations are greater than 0.5 and the FAR
values are less than 0.5 if appropriate λ values are used.
4. Conclusions

This study addressed the imbalance classification problem
applied to ozone episode day forecast. The models classify each
day as episode or non-episode based on the standard of daily
maximum8hO3concentration. Sixairquality stations inTaiwan,
with diverse distribution features, were employed as test cases.

Two different input datasets, regional and single-site, were
generated from raw air quality and meteorological observations.
According to the numerical experiments, the predictions based
on the regional dataset indeed improved the forecasting accu-
racy. If theamountof regionaldata is too large, thePCAtechnique
can be used to reduce and orthogonalise the original input data.

Two ANN models were evaluated by receiver operating cha-
racteristic (ROC) curves. The results obtained by the two app-
roacheswere found tobe similar. In otherwords, the cost-penalty
method has the same effect as moving the decision threshold.

If the misclassification costs can be evaluated, the cost-
sensitive method canminimise the total costs. If the misclassi-
fication costs are unknown, the cost-sensitive method can
obtain a better forecast if a proper cost ratio is used. For clean
areas where episodes are very rare, the cost-sensitive ANN
models cando little.Weshould justwait for the episode to occur
unless we can tolerate the inconveniences caused by a large
number of false alarms.
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